Friday, September 02, 2005

Math Geekiness...

Theorem: All numbers are equal.

Proof: Choose arbitrary a and b, and let t = a + b. Then


a + b = t


(a + b)(a - b) = t(a - b)


a^2 - b^2 = ta - tb


a^2 - ta = b^2 - tb


a^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/4


(a - t/2)^2 = (b - t/2)^2


a - t/2 = b - t/2


a= b


So all numbers are the same, and math is pointless... ya? =)